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The ability to computationally characterize and analyze
shapes is crucial to much of Computer Vision, Pattern Rec-
ognition, and Image Understanding. The semantics of shape,
however, is essentially anthropocentric in most practical ap-
plications. Indeed, it is desirable that a robot capable of de-

scribing objects in a scene, be able to do so in a way that
makes sense to humans. Confronted with a complex shape,

we humans are able to rapidly single out the most salient
“geometric events” (such as kinks and protuberances), and
use them to simplify the shape to a morphological primal
sketch. The shape is then interpreted by analogy, association
or even imagination (as in the case of cloud gazers!). Hu-

mans also seem to be able to
do this in a multiresolutional
fashion, picking out the gross
forms first and subsequently
embellishing them with finer
details. Thus, in order to
computationally understand
shapes, it is necessary to ex-
tract those geometric cues
that are morphologically
meaningful. Using Computa-
tional Geometry, we have
been developing algorithms
for morphologically analyz-
ing and characterizing shapes
in a multiscale setting.

The notion of shape is inti-
mately related to the notion
of contour or boundary.The
boundary of a shape has,
however, a continuum of
points, and as such is not
amenable to finite represen-
tation or computation. Thus,
it is vital to first  obtain a dis-
crete representation of its
boundary in a morphologi-
cally faithful  manner; i.e.,
preserving its structural in-
tegrity.  If the coordinates of
the boundary points of a shape
are specified parametrically,
then any discretization of  the
boundary can be thought of as
a piecewise constant approxi-

mation of the  coordinate functions. Also, in order to be mor-
phologically faithful to the shape, the discretization must be

Coordinates (blue) and Haar approximations (red).
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scale-adaptive to local variations of
the shape’s boundary. Now, the dis-
crete Haar wavelet expansion of a
function yields piecewise constant
approximations of the function at
multiple scales. By representing
the slowly varying and the rapidly
varying parts of the function by
Haar approximations at  different
scales, the function can be approxi-
mated to any degree by a piecewise
constant function. Using this idea,
the coordinate functions of a para-
metrically specified curve may be
jointly and adaptively approxi-
mated at varying scales to obtain
a discretized representation of the
curve (see Figure 1).

Next, the fundamental  morpho-
logical attributes of the shape must
be extracted from this representa-
tion. We look at a familiar geomet-
ric construct—the Delaunay Tri-
angulation (DT)—from a novel
perspective: the DT of a discretely
sampled shape reveals important
morphological information that
helps characterize, recognize and
analyze the shape. It serves as a
natural morphological grid that lo-
calizes the structural properties of
the shape. Indeed, the DT of a polygonal
shape has three kinds of triangles: i) Termi-
nal triangles or T-triangles, each with two
external (i.e., polygonal boundary) edges,
marking the termination of a limb or a pro-
trusion of the polygon, ii) Sleeve triangles
or S-triangles, each with one external edge,
constituting the sleeve of a  limb or protru-
sion and iii)  Junction triangles or J-tri-
angles, with  no external edges, determin-
ing a  junction or a branching of the poly-
gon. Thus, each kind of triangle carries mor-
phological information about  the local struc-
ture of the polygon. In any triangulation of
a simple polygon, the number ∆J of J-tri-
angles is related to the number ∆T of T-tri-
angles by ∆J = ∆T + 2g – 2, where g is the
genus (i.e., number of holes) of the poly-
gon. We will identify two kinds of chain
complexes of triangles in any triangulation
of a polygon: i) A  limb λ is a chain complex
of pairwise adjacent triangles,  of the form

J S ... S T, and ii) a torso τ is a
chain complex of pairwise adja-
cent triangles, of the form J S ...
S J (see Figure 2); the J-triangles
at the ends of a torso may be the
same triangle (as in the case of
loops or handles). Chain com-
plexes of the form T S ... S T are
both limbs and torsos. The num-
ber of limbs in a triangulation of
a polygon is given by N (λ) = ∆T
+ min (1,∆J) - 1,  and the number
of torsos is given by

In the context of  the DT of a poly-
gon, however, the above formulae
have real morphological signifi-
cance. The limb and torso chain
complexes of the DT of a polygon
actually do correspond to morpho-
logical limbs and torsos (i.e.,
trunks connecting branch points)
of the polygon’s structure. These
features (e.g., holes, limbs, and
torsos) are the only  morphologi-
cal features of any planar shape.
Therefore, the morphology of a
polygonal shape is completely
characterized by the numbers ∆J
and ∆T  in its DT. Another impor-

tant morphological descriptor of a shape is
its skeleton (the ‘frame’ over  which the
‘meat’ of the shape hangs). According to the
morphological meaning of each kind of tri-
angle in the DT of a polygonal shape, an
appropriate one dimensional retract can be
constructed in each of the triangles, to col-
lectively yield a skeleton of the shape (see
Figure 3). This method of constructing skel-
etons has several advantages over existing
methods. More information can be found at
http://cnls.lanl.gov/Highlights/1997-07.

Figure 3.

Figure 2.
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